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SUMMARY

Somatic cells can be reprogrammed into induced
pluripotent stem cells (iPSCs) by defined factors.
However, the low efficiency and slow kinetics of the
reprogramming process have hampered progress
with this technology. Here we report that a natural
compound, vitamin C (Vc), enhances iPSC genera-
tion from both mouse and human somatic cells. Vc
acts at least in part by alleviating cell senescence,
a recently identified roadblock for reprogramming.
In addition, Vc accelerates gene expression changes
and promotes the transition of pre-iPSC colonies to
a fully reprogrammed state. Our results therefore
highlight a straightforward method for improving
the speed and efficiency of iPSC generation and
provide additional insights into the mechanistic basis
of the reprogramming process.

INTRODUCTION

Animal development starts with the fertilized egg undergoing

a programmed process of cell proliferation and differentiation

that generates all cell types of an individual. This process was

thought to be irreversible in mammals, but the cloning of Dolly

proved that fully differentiated somatic cell nuclei can be reprog-

rammed back to an embryonic-like state by factors present in

oocytes (Wilmut et al., 1997). More recently, Yamanaka and

colleagues demonstrated that mouse somatic cells can also

acquire a pluripotent state in vitro after the introduction of a

defined combination of transcription factors that are highly

enriched in embryonic stem cells (ESCs) (Takahashi and Yama-

naka, 2006). Mouse iPSCs are similar to ESCs in most aspects

and can generate entire individuals after tetraploid complemen-

tation (Kang et al., 2009; Okita et al., 2007; Wernig et al., 2007;

Zhao et al., 2009). iPSCs have also been produced from other

species including human and pig (Esteban et al., 2009; Takaha-

shi et al., 2007; Yu et al., 2007), raising the possibility of clinical
application of personalized stem cell-based therapies without

immune rejection or ethical concerns. Human iPSCs also

provide a unique platform for studying genetic diseases in vitro

(Park et al., 2008). However, the low efficiency of iPSC genera-

tion is a significant handicap for mechanistic studies and high

throughput screening, and also makes bona fide colony isolation

time consuming and costly. The efficiency of alkaline phospha-

tase-positive (AP+) colony formation with the four Yamanaka’s

factors (Sox2, Klf4, Oct4, c-Myc; SKOM) in mouse fibroblasts

is about 1% of the starting population, but only around 1 in 10

of those colonies is sufficiently reprogrammed to be chimera

competent (Silva et al., 2008). In human fibroblasts, only about

0.01% of cells transduced with SKOM form AP+ iPSC colonies

(Takahashi et al., 2007; Yu et al., 2007). In our search for

compounds that improve the efficiency of somatic cell reprog-

ramming, we have found that a vitamin (Vc) that is highly abun-

dant in our diet significantly increases mouse and human iPSC

colony formation, at least in part by alleviating cell senescence.
RESULTS

Vitamin C Can Improve iPSC Generation
Somatic cells including fibroblasts quickly undergo senescence

in culture, in part as a result of accumulation of reactive oxygen

species (ROS) produced by cell metabolism (Parrinello et al.,

2003). We studied ROS generation during the reprogramming

of mouse embryonic fibroblasts (MEFs) and noticed a significant

early increase (2.5- to 3-fold) in cells transduced with Sox2/Klf4/

Oct4 (SKO) compared to SKOM and the control (Figure 1A). This

is consistent with SKO being less efficient than SKOM in gener-

ating iPSCs, and led us to hypothesize that antioxidants might

improve the efficiency of SKO-based reprogramming by sup-

pressing ROS. We found that a combination of vitamin B1

(Vb1), reduced gluthatione (GSH monoethyl ester, GMEE),

sodium selenite (Sel), and ascorbic acid (vitamin C, or Vc) (Arri-

goni and De Tullio, 2002) significantly accelerated the appear-

ance of GFP+ cells in MEFs carrying a transgenic Oct4-GFP

promoter and bypassed the need to split on feeders (Figure 1B,

left). We then measured the contribution of each antioxidant by
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Figure 1. Vitamin C Enhances the Reprogramming of Mouse Fibroblasts

(A) Left: Measurement of ROS in SKO- and SKOM-infected MEFs (from ICR mice) compared to empty vector. Mean values + standard deviation (SD) of three

independent experiments are shown. D indicates day hereafter. Right: Scatter plot histogram of a similar representative experiment, only 1 time point is shown.

(B) Left: Phase contrast and fluorescence photographs of SKO-infected MEFs untreated or treated with mixed antioxidants (Antiox). Arrows point to emerging

colonies, a representative experiment is shown. Middle: FACS quantification of GFP+ cells in SKO-infected MEFs treated with mixed antioxidants or each
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using FACS and found that Vc accounted for the entire increase

in reprogramming efficiency (Figure 1B, middle), achieving a

remarkable 10% of cells being GFP+ at day 16. Vb1, GMEE,

Sel, and other compounds with compelling antioxidant activities

including n-acetylcysteine, resveratrol, a-lipoic acid, vitamin E,

and L-carnitine hydrochloride (not shown) did not have any

noticeable effect. Vb1, GMEE, and Vc all reduced the steady-

state ROS level in SKO-infected MEFs (Figure 1B, right), sug-

gesting that the activity of Vc in this context may in fact be inde-

pendent of its antioxidant properties. Next, we evaluated the

effect of splitting SKO-infected MEFs (3 3 103 cells) on feeders

at day 7 postinfection, because under these circumstances

GFP+ colonies originate from single cells. At day 20, most alka-

line phosphatase-positive (AP+) colonies in wells treated with

Vc were GFP+ compared to very few in the control (Figure 1C),

and the overall efficiency (number of colonies divided by number

of starting cells) was �3.8%. iPSC clones generated with mixed

antioxidants or Vc under these conditions were pluripotent as

demonstrated by standard characterization procedures and

the formation of teratomas and chimeric mice with contribution

to the germline (Figure 1D and Figures S1A–S1H available

online). Addition of Vc to SKO-infected adult mammary gland

fibroblasts (MaFs) showed a similar increase in GFP+ cells

compared to MEFs (Figure S1I), demonstrating that the effect

of Vc is not restricted to a specific cell type. A dose response

experiment in SKO-infected MEFs also showed that a low

dose of Vc (10 mg/ml) can achieve a maximum effect (Figure 1E,

left), suggesting that the enhanced reprogramming is not due to

cell death or selection of resistant populations. Notably, Vc had

a more potent effect in increasing GFP+ cells in SKO-infected

MEFs than the widely used histone deacetylase inhibitor valproic

acid (VPA) (Huangfu et al., 2008), and the combination of both

was additive (Figure 1E, middle), suggesting that they act

through different mechanisms. Vc had to be added for the dura-

tion of the experiment to achieve its full potential (Figure 1E,

right). Consistently, DNA microarray analysis of an SKO time

course experiment showed sustained acceleration of transcrip-

tomic changes in the presence of Vc: Vc-treated cells at days

6, 8, and 10 clustered with day 10 untreated cells (Figure S1J).

We then tested whether Vc can enhance reprogramming effi-

ciency with SKOM. Mixed antioxidants promoted the appear-
antioxidant separately. Mean values of five independent experiments (performed

SKO-infected MEFs (from ICR mice) treated as indicated; mean values + SD of t

(C) Top: AP staining of SKO-infected MEFs untreated or treated with Vc and split i

shown. Bottom: Counting of AP+ and GFP+ colonies in the same experiment, me

(D) Top: Hematoxylin/eosin-stained sections of teratomas formed after 3 we

(SKOAntiox-1). Bottom left: Beta galactosidase staining of a nonchimeric and a

and Vc (SKOVc-1). Bottom middle: phase contrast and fluorescence photographs

produced with the same clone.

(E) Left: Dose-response experiment to determine the optimal concentration of

measured by FACS, mean values + SD of a representative experiment measure

Vc, or a combination of both. GFP+ cells were measured by FACS, mean values +

indicate p value < 0.01. Right: SKO-infected MEFs were untreated or treated w

measured by FACS; mean values + SD of a representative experiment measured

(F) Left: Phase contrast and fluorescence photographs of SKOM-infected MEFs

cells measured by FACS in SKOM-infected MEFs treated as indicated, mean va

shown.

(G) Left: AP staining of SKOM-infected MEFs untreated or treated with Vc and spl

is shown. Right: counting of AP+ and GFP+ colonies in the same experiment, me
ance of GFP+ colonies by day 8 without splitting on feeders

(Figure 1F, left), compared to none in the control. FACS analysis

was performed at day 9 to prevent cell overgrowth and detected

an average 2% of GFP+ cells in Vc-treated cells while the other

antioxidants had no effect (Figure 1F, right). When SKOM-

infected MEFs (2 3 103 cells) were split on feeders and allowed

to grow until day 14, the corrected efficiency of AP+/GFP+ colony

formation was �8.75% (Figure 2G). Thus, Vc improves reprog-

ramming efficiency with both SKO and SKOM, and the effect is

not mediated, at least not exclusively, by a reduction in ROS.

Vitamin C Converts Pre-iPSCs into iPSCs
Our observation that Vc increases the ratio of GFP+/AP+ colonies

suggested that it may promote the transition from pre-iPSCs to

iPSCs as described previously (Silva et al., 2008). To test this

idea, we added mixed antioxidants or Vc to pre-iPSC clones

derived from MEFs or MaFs and observed highly homogeneous

acquisition of ESC-like characteristics and GFP fluorescence

within the course of a few passages (Figures 2A and 2C). Newly

reprogrammed iPSCs derived from pre-iPSCs were stable in

continuous culture as evaluated by qPCR of pluripotent markers,

demethylation of the Nanog proximal promoter, and formation of

chimeric mice (Figures 2B and 2D–2F). Consistent with the rapid

conversion to a pluripotent state, DNA microarray analysis

showed quick prominent changes in gene expression in MaF

pre-iPSCs treated with Vc (Figures S2A–S2D). A summary of

the iPSC cell lines generated from pre-iPSCs via Vc is included

in Figure S2E.

We also compared the ability of Vc and the two inhibitor cock-

tail 2i (ERK and GSK3b inhibitors) described by Silva et al. (2008)

to transform pre-iPSCs into iPSCs. In standard mouse ESCs

medium the percentage of GFP+ cells was higher in Vc-treated

cells than in 2i-treated ones (Figure 2G). In N2B27 plus LIF, the

medium used in the original study, the percentage of GFP+ cells

was similar for Vc and 2i but the proliferation potential was supe-

rior in Vc-treated cells (Figure 2H). Moreover, western blot of

lysates from pre-iPSCs treated with Vc did not show a reduction

in total ERK or active ERK (pERK), although 2i eliminated the

pERK signal as expected (Figure 2I). Therefore, Vc efficiently

transforms pre-iPSC clones into pluripotent iPSCs via a mecha-

nism that seems different from 2i.
in triplicate) + SD are shown. Right: ROS measurement at day 5 postinfection of

hree independent experiments are shown.

n triplicate on 6-well plates coated with feeders. A representative experiment is

an values + SD are shown.

eks with a MEF iPSC clone generated with SKO and mixed antioxidants

chimeric embryo (blue) produced with a MEF iPSC clone generated with SKO

of Oct4-GFP+ germline-progenitor cells in the genital ridge of another embryo

Vc that increases reprogramming in SKO-infected MEFs. GFP+ cells were

d in triplicate are shown. Middle: SKO-infected MEFs were treated with VPA,

SD of a representative experiment measured in triplicate are shown. Asterisks

ith Vc for selected periods of time during iPSCs generation. GFP+ cells were

in triplicate are shown.

untreated or treated with mixed antioxidants presented as in (B). Right: GFP+

lues + SD of three independent experiments (each measured in triplicate) are

it in triplicate on 6-well plates coated with feeders. A representative experiment

an values + SD are shown.
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Figure 2. Vitamin C Allows the Reprogramming of Pre-iPSCs

(A) Pre-iPSC colonies (GFP�) picked at day 16 postinfection from SKOM-infected MEFs cultured in standard reprogramming medium were untreated or treated

with mixed antioxidants as indicated. Left: number of GFP+ cells measured by FACS in every passage. Right: Representative phase contrast and fluorescence

photographs from two of the three clones.

(B) qPCR analysis for the indicated genes and the exogenous transgenes via lysates from the same cells.

(C) Similar experiment as in (A) but with MaF pre-iPSC clones (produced with SKOM) treated with Vc.

(D) qPCR analysis from the same cell lines performed as in (B).
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Vitamin C Alleviates the Senescence Roadblock during
iPSC Generation
We did not observe a significant change in apoptosis after Vc

treatment of SKO- or SKOM-infected MEFs at any of the time

points evaluated (Figure 3A). However, we detected increased

proliferation in the middle phase of reprogramming (Figure 3B),

suggesting a bypass of cell senescence. Supporting this idea,

we had seen that nontransduced MEFs treated with Vc have

a prolonged lifespan (up to 12 passages in this study) compared

to control MEFs untreated or those treated with other antioxi-

dants (Figures S3A and S3B). We then performed a western

blot with lysates from an SKO time course experiment and

observed a significant reduction in p53 and p21 levels in Vc-

treated cells (Figure 3C). The cells retained basal levels of p53,

so the recruitment of Tp53BP1 to nuclear foci (indicative of

functional DNA repair machinery) was unaffected by Vc in both

SKO- and SKOM-infected MEFs (Figure 3D). Next, we studied

the effect of exogenous p53 activation or knockdown on

Vc-mediated reprogramming. p53 adenoviruses or the p53-

activating compound nutlin-3a inhibited the formation of GFP+

colonies in SKO-infected MEFs in a dose-dependent manner

(Figure 3E; Figure S3C). On the other hand, p53 shRNA

increased GFP+ colonies by �100-fold without Vc and 2- to

3-fold with Vc (Figure 3F). The latter modest increase might

reflect the fact that Vc treatment alone reduces but does not

abolish p53 expression, allowing the shRNA to reduce it further.

Our data therefore suggest that Vc improves iPSC generation by

reducing p53 levels and alleviating cell senescence while still

maintaining an intact DNA repair machinery.

Vitamin C Improves the Generation of Human iPSCs
Reprogramming is more challenging in human cells, raising

a barrier for producing iPSCs and concerns about the quality

and homogeneity of clones that do arise (Yamanaka, 2009).

While our mouse experiments were in progress, we tested

whether the antioxidant mix can also enhance reprogramming

of human somatic cells. We used skin fibroblasts from a fetus

with beta thalassemia, placental corionic mesenchymal cells

(CMCs), and cells from the periosteal membrane. Addition of

mixed antioxidants to KSR medium did not increase the basal

low efficiency of reprogramming for any of these cell types (not

shown), and we noticed that KSR already contains antioxidants

including Vc (Garcia-Gonzalo and Izpisúa Belmonte, 2008). We

then switched to a full serum protocol (Figure 4A), previously

thought to be ineffective for human cells, to mimic the culture

conditions of our mouse experiments. Mixed antioxidants alone

or in combination with VPA potently increased the number of AP+

ESC-like colonies in SKOM-infected cells (Figure 4B). No

increase was observed with SKO (not shown), possibly because

of low efficacy of this combination in the human context (Naka-
(E) DNA methylation profile of the Nanog proximal promoter in selected pre-iPSC

(F) Chimeric mice produced with a MEF pre-iPSC clone (MEF C2) treated with m

(G) Left: Phase contrast and fluorescence photographs of a representative MaF

ESCs medium or N2B27 + LIF, in both cases untreated or treated with Vc or 2i. S

quantification of GFP+ cells with a pre-iPSC clone (MaF 4FC9) cultured for 1 pass

(H) FACS quantification of GFP+ cells and proliferation of two pre-iPSC clones (M

treated with Vc or 2i.

(I) Western blot for ERK and pERK of lysates from MaF 4FC9 cultured on gelatin
gawa et al., 2008; Wernig et al., 2008). Once we had identified

that Vc is the key compound in the antioxidant mix, we added

Vc + VPA to a different set of human fibroblasts transduced

with SKOM and observed very high reprogramming efficiency,

up to 6.2% of the cells with fibroblasts from a patient with orni-

thine transcarbamylase deficiency (OTCD) (Figure 4C). Vc or

Vc + VPA could reprogram adipose stem cells (ASCs) with

even higher efficiency (up to 7.06%), in agreement with a recent

report describing superior susceptibility of these cells (Figure 4D;

Sun et al., 2009). Selected iPSC colonies from these experiments

were expanded in KSR medium on feeder layers or in mTeSR

medium on Matrigel. They homogeneously displayed features

of human ESCs (hESCs) through multiple passages, as evalu-

ated by morphology, number of chromosomes, activation of

the endogenous ESC program, silencing of the transgenes,

and demethylation of Oct4 and Nanog proximal promoters

(Figures 4E–4H). Our iPSCs also acquired markers of all

three germ layers after differentiation into embryonic bodies

(EBs) and developed complex teratomas (Figures 4I and 4J);

a summary of human iPSCs characterization is shown in

Figure 4K.

DISCUSSION

We show here that vitamin C, a common nutrient vital to human

health, enhances the reprogramming of somatic cells to pluripo-

tent stem cells. By adding Vc to the culture medium, we can now

obtain high-quality iPSCs from mouse and human cells routinely.

While our work was in progress, six independent laboratories

identified cell senescence as a roadblock for reprogramming

(Hong et al., 2009; Kawamura et al., 2009; Li et al., 2009; Marión

et al., 2009; Utikal et al., 2009; Zhao et al., 2008), creating signif-

icant interest in finding compounds that alleviate cell senes-

cence without increasing the risk of mutations. Vc reduces p53

levels during reprogramming and this may raise concerns

regarding safety, but at least based on the parameters tested,

our cell lines are devoid of noticeable side effects.

We uncovered this new role of Vc by trying to correct

increased ROS production in SKO-infected MEFs. Vc function

in this context seems to be unrelated to its antioxidant activity,

but it nevertheless seems likely that ROS contribute to the lower

reprogramming efficiency of SKO compared to SKOM. The

mechanism underlying this increase in ROS merits further inves-

tigation and suggests that metabolic changes are triggered

differentially by SKO and SKOM. Besides reducing p53, Vc

accelerates transcriptome changes during reprogramming and

allows the conversion of pre-iPSCs to iPSCs. The extent to which

these observations relate to cell senescence is unclear, and it is

possible that Vc is acting in other ways as well. For example, it

could accelerate stochastic events during reprogramming,
clones before and after treatment with mixed antioxidants or Vc.

ixed antioxidants. Asterisks indicate control mice.

pre-iPSC clone (MaF 4FC9) cultured for 1 passage on feeders in either mouse

imilar results were observed with a different clone (MaF 4FC10). Right: FACS

age with mouse ESCs medium + Vc or 2i on feeders or without them on gelatin.

aF 4FC9 and 4FC10) cultured for 1 passage with N2B27 + LIF and untreated or

and untreated or treated with Vc or 2i; tubulin is the loading control.
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Figure 3. Vitamin C Alleviates the Senescence Roadblock in Reprogramming Fibroblasts

(A) Measurement of apoptosis during iPSCs generation in SKO- and SKOM-infected MEFs untreated or treated with Vc, a representative time course experiment

performed in triplicate (mean values + SD) in shown.

(B) Measurement of proliferation by FACS with the same samples. Mean values + SD is shown, asterisks indicate p value < 0.01.

(C) Representative western blot for p53, p21, and tubulin in MEFs infected with SKO or empty vector untreated or treated with Vc.

(D) Top: Bar graph showing the quantification of Tp53BP1-positive cells assessed by immunofluorescence microscopy in duplicate coverslips (at least 500 nuclei

were counted in total and mean values + SD are shown) of a representative experiment with SKO- and SKOM-infected MEFs untreated or treated with Vc; two time

points are shown. Bottom: immunofluorescence captures for Tp53BP1 at day 4 postinfection of a similar representative experiment; scale bars represent 25 mM.
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perhaps by promoting epigenetic modifications that allow further

changes to proceed. In this regard, Vc is a cofactor in reactions

driven by dioxygenases including collagen prolyl hydroxylases,

HIF (hypoxia-inducible factor) prolyl hydroxylases, and histone

demethylases (Shi, 2007), and it is interesting to consider that

Vc might influence reprogramming by increasing the activity of

these enzymes. Histone demethylases are important for devel-

opment and modulate the expression of the ESC master tran-

scription factor Nanog (Cloos et al., 2008), so it is possible that

Vc allows the reprogramming to run more smoothly by facilitating

histone demethylation. While additional mechanistic studies are

done, Vc may prove useful for high-throughput screening of

compounds and siRNA oligos or for enhancing the efficiency of

virus-free delivery systems (Kim et al., 2009; Yu et al., 2009). It

is also an interesting concept that a vitamin with long-debated

anti-aging effect (Harman, 1956; Massip et al., 2009) has such

a potent effect on reprogramming, and our work may stimulate

further research in this area as well.

EXPERIMENTAL PROCEDURES

Cell Culture

Mouse fibroblasts were transduced (40,000 cells) at passage 2 or 3 with pMX-

based retroviruses in 6-well culture dishes as in our previous reports (Qin et al.,

2008). MEFs and MaFs from OG2 mice, which carry the Rosa26-lacZ allele and

a transgenic Oct4 promoter driving GFP expression (Huangfu et al., 2008; Silva

et al., 2008), were used in all experiments unless otherwise indicated. For

human iPSCs generation, 50,000 cells at early passages were transduced in

6-well dishes with pMX-based vectors that encode human factors (Adgene).

At day 6, 5,000 to 10,000 cells were split on feeders. ROS and apoptosis

were detected with 2,7-dichlorofluorescein diacetate (DCFH-DA, Beyotime)

and the PE Annexin V Apoptosis Detection Kit (BD PharMingen) according

to the manufacturers’ manuals. Vc and the other antioxidants and ERK

(PD0325901) and GSK3b inhibitors (CHIR99021) were purchased from Sigma;

VPA was purchased from Merck. The working concentrations were: Vc 25

or 50 mg/ml (unless otherwise indicated), Vb1 9 mg/L, Sel 20 nM, GMEE

1.5 mg/L, n-acetylcysteine 1 mM, resveratrol 10 mM, a-lipoic acid 5 mg/ml,

vitamin E 25 mM, L-carnitine hydrochloride 15 mg/ml, PD0325901 1 mM,

CHIR99021 3 mM, and VPA 1 mM. Antioxidants including Vc were added

from day 2 till the end of each experiment unless otherwise indicated and

maintained for the continuous culture of picked mouse iPSC colonies. VPA

was added from day 3 to 8 and day 8 to 16 of mouse and human iPSCs gener-

ation, respectively. p53 and control (empty) adenoviruses were purchased

from Saibainuo Gene Technology. pRetroSuper vectors containing shRNA

sequences for p53 (GTACATGTGTAATAGCTCC) (Kawamura et al., 2009) or

the control firefly luciferase gene were made by us; after infection, cells were

selected in puromycin for 4 days.

Cell Line Characterization

AP staining, immunofluorescence microscopy, karyotyping, bisulfate se-

quencing, and chimeric mice generation were performed as described

(Esteban et al., 2009; Qin et al., 2008). A Zeiss SteREO Lumar V12 fluores-

cence microscope was used to observe GFP+ germ cells. For teratoma forma-

tion, 1,000,000 cells were injected subcutaneously into nude mice for mouse

iPSCs and 3,000,000 into SCID mice for human iPSCs. EBs from human iPSCs

were produced by detaching cells growing on feeders with trypsin and seeding

in nonadherent plates for 7–9 days; medium (human ESCs maintenance
(E) FACS quantification of GFP+ cells in SKO-infected MEFs treated with Vc, inc

and 4000 viral particles/cell in this order) were added at day 4 postinfection. A rep

presented (also in F).

(F) Left: Effect of p53 shRNA knockdown on the number of GFP+ colonies induc

specificity of our shRNA vectors; lysates were extracted at day 8.
medium without bFGF) was replaced every other day. Western blotting detec-

tion was performed with ECL+ (Amersham). qPCR was done with SYBR Green

(Takara), samples were analyzed in duplicate or triplicate, and beta actin

values were used for normalization. Primers for genomic qPCR, semiquantita-

tive RT-PCR, and bisulfate sequencing are available upon request. DNA micro-

arrays were performed with Affymetrix MoGene 1.0 ST chip.
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Figure 4. Vitamin C Enhances the Generation of Human iPSCs

(A) Schematic representation of our human iPSC generation protocol.

(B) Left: AP staining of selected iPSCs generation experiments in 10 cm dishes with the indicated cell types and treatments. DFBS, DFBS-based medium; BT,

beta thalassemia. Right: quantification of the same dishes and additional experiments, efficiency is labeled (when convenient) on the top of each bar.

(C) Top: AP staining in 10 cm dishes of additional experiments with fibroblasts treated with Vc + VPA. Bottom: bar graph showing quantification of the same

experiment.
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